An Enantiornithine with a Fan-Shaped Tail, and the Evolution of the Rectricial Complex in Early Birds

نویسندگان

  • Jingmai K. O’Connor
  • Xiaoli Wang
  • Xiaoting Zheng
  • Han Hu
  • Xiaomei Zhang
  • Zhonghe Zhou
چکیده

The most basal avians Archaeopteryx and Jeholornis have elongate reptilian tails. However, all other birds (Pygostylia) have an abbreviated tail that ends in a fused element called the pygostyle. In extant birds, this is typically associated with a fleshy structure called the rectricial bulb that secures the tail feathers (rectrices) [1]. The bulbi rectricium muscle controls the spread of the rectrices during flight. This ability to manipulate tail shape greatly increases flight function [2, 3]. The Jehol avifauna preserves the earliest known pygostylians and a diversity of rectrices. However, no fossil directly elucidates this important skeletal transition. Differences in plumage and pygostyle morphology between clades of Early Cretaceous birds led to the hypothesis that rectricial bulbs co-evolved with the plough-shaped pygostyle of the Ornithuromorpha [4]. A newly discovered pengornithid, Chiappeavis magnapremaxillo gen. et sp. nov., preserves strong evidence that enantiornithines possessed aerodynamic rectricial fans. The consistent co-occurrence of short pygostyle morphology with clear aerodynamic tail fans in the Ornithuromorpha, the Sapeornithiformes, and now the Pengornithidae strongly supports inferences that these features co-evolved with the rectricial bulbs as a "rectricial complex." Most parsimoniously, rectricial bulbs are plesiomorphic to Pygostylia and were lost in confuciusornithiforms and some enantiornithines, although morphological differences suggest three independent origins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird.

Most of Mesozoic bird diversity comprises species that are part of one of two major lineages, namely Ornithurae, including living birds, and Enantiornithes, a major radiation traditionally referred to as 'opposite birds'. Here we report the largest Early Cretaceous enantiornithine bird from north-east China, which provides evidence that basal members of Enantiornithes share more morphologies wi...

متن کامل

Unique caudal plumage of Jeholornis and complex tail evolution in early birds.

The Early Cretaceous bird Jeholornis was previously only known to have a distally restricted ornamental frond of tail feathers. We describe a previously unrecognized fan-shaped tract of feathers situated dorsal to the proximal caudal vertebrae. The position and morphology of these feathers is reminiscent of the specialized upper tail coverts observed in males of some sexually dimorphic neornith...

متن کامل

A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle

Enantiornithes are the most successful clade of Mesozoic birds. Here, we describe a new enantiornithine bird, Cruralispennia multidonta gen. et sp. nov., from the Protopteryx-horizon of the Early Cretaceous Huajiying Formation of China. Despite being among the oldest known enantiornithines, Cruralispennia displays derived morphologies that are unexpected at such an early stage in the evolution ...

متن کامل

A precocial avian embryo from the Lower Cretaceous of China.

An embryo of an enantiornithine bird has been recovered from the Lower Cretaceous rocks of Liaoning, in northeast China. The bird has a nearly complete articulated skeleton with feather sheet impressions and is enclosed in egg-shaped confines. The tucking posture of the skeleton suggests that the embryo had attained the final stage of development. The presence of well-developed wing and tail fe...

متن کامل

A primitive enantiornithine bird and the origin of feathers.

A fossil enantiornithine bird, Protopteryx fengningensis gen. et sp. nov., was collected from the Early Cretaceous Yixian Formation of Northern China. It provides fossil evidence of a triosseal canal in early birds. The manus and the alular digit are long, as in Archaeopteryx and Confuciusornis, but are relatively short in other enantiornithines. The alula or bastard wing is attached to an unre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016